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Behavior near a periodic o rb i t  of funct ional  d i f f e r e n t i a l  equations 

by 

Jack K. Hale 

n I. Introduction. Let C = C([- r ,O] ,E  ) be the  space of continuous 

functions mapping the  i n t e r v a l  [ - r , O ]  i n t o  an n-dimensional r e a l  or 

complex vector space En. For any cp i n  Cy def ine 11y11 = s ~ p - ~ ~ ~ . . ~  

I c p ( f 3 ) l  where 1x1 i s  the  norm of a vector x i n  En, If x i s  a 

continums function mapping any i n t e r v a l  [a-r ,  a+A)  i n t o  E ~ ,  A > o 

and t i s  a given element of [a ,  a t A ) ,  define x i n  C by xt(0) = 

x( t t8 ) ,  -r 5 8 5 0. If F i s  a function taking R x C i n t o  E , R = 

t 
n 

(-w,oo), then a funct ional  d i f f e r e n t i a l  equation i s  defined by the  re la -  

t i o n  

%(t) = F(t,xt) 

where %(t) denotes t h e  r i g h t  hand der ivat ive with respect t o  t. A 

solut ion of (1) with i n i t i a l  value cp a t  Q i s  a continuous function 

x = x(a,y) defined on [b-r,  a+A), A > 0 such t h a t  x = Q and x 

s a t i s f i e s  (1) f o r  t i n  [b, 0 4 ) .  It i s  wel l  known t h a t  F(t,cp) can- 

b 

tinuous i n  t,cp and loca l ly  Lipschitzian i n  cp implies t h e  existence and 

uniqueness of a solution of (1) through (a,cp) f o r  any a,cp. Further- 

more, t h e  solut ion x(b,cp)(t) i s  continuous i n  (b,cp,t) i n  i t s  domain of 

def in i t ion .  It w i l l  be assumed i n  the  sequel t h a t  F i s  smooth enough 

t o  ensure t h i s  l a t t e r  pmperty and, i n  fact, F(t,cp) i s  continuous i n  

t,cp and has  a continuous f i r s t  der iva t ive  w i t h  respect t o  cp. 

If F(t,cp) = f (y )  i s  independent of t, system (1) i s  referred 

t a  as an autmamms funct ional  d i f f e r e n t i a l  equation 
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( 2 )  %(t) = f(xt). 

I n  t h i s  case, it i s  no r e s t r i c t i o n  t o  assume t h a t  CT = 0 and write t h e  

solution as ~(9). An o rb i t  O ' ( 9 )  of (2) through cp i s  defined i n  C 

and not i n  En as 0 ( c p )  = UtZOxt(Cp). The qua l i ta t ive  theory of auto- 

nomous functional d i f f e r e n t i a l  equations i s  concerned with the  study of 

t he  geometrical properties of the  o rb i t s  of (2) .  

+ 

We b r i e f l y  out l ine 

below some of t he  r e su l t s  t h a t  have been obtained alolng t h i s  l i n e  for  

equilibrium points and periodic orbi ts .  

An equilibrium or c r i t i c a l  point of (2)  i s  a constant function 

Without any loss i n  generali ty,  we may a s sme  t h i s  

x = 0; t h a t  i s ,  f(0) = 0. 

which s a t i s f i e s  (2) .  

equilibrium point i s  

equation associated w i t h  x = 0 i s  

The l inear  var ia t iona l  

where L(cp) i s  the  der ivat ive of f a t  0 evaluated a t  cp.  The map- 

ping L: C +En i s  a continuous l inear  operator and therefore has  t h e  

form 

where 7 i s  an n X n matrix with elements of bounded variation. The 

charac te r i s t ic  equation fo r  ( 3 )  i s  



( 5 )  

The solution 
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x = o  of (2) i s  called nondegenerate i f  h , = o  i s  not a 

solution of ( 5 )  and elementary i f  no solution of ( 5 )  has  zero r e a l  part .  
UI 

If no solution of ( 5 )  has zero r e a l  par t ,  then the space C 

can be decomposed as the  d i r e c t  sum of  two l inear  subspaces, C = S 8 U, 

which ars invariant under the  mapping induced by the  solutions of ( 3 )  

such t h a t  t he  solutions of ( 3 )  are  decaying exponentials on 

ing.exponentials on U. The s e t  U i s  f i n i t e  dimensional. The s e t s  

S and grc~w-  

S and U are  re€erred t o  as %he s table  and unstable manifolds, re- 

spectively, of ( 3 ) .  The s e t  S 'may a l so  be characterized as  the  s e t  

of i n i t i a l  val.ues of those solutions of ( 3 )  which remain i n  a neighbor- 

hood of zero f o r  a l l  t 2 0. The se t  U i s  characterized i n  the  same 

manner except for  t 5 0. 

The l a t t e r  characterization of S and U may a l so  be used 

t o  define the  s table  and unstable manifolds and u fo r  t h e  solution 

x = 0 

[ 11 t h a t  an elementary c r i t i c a l  point p of (2 )  exhibi ts  i n  C a saddle 

point s t ruc ture  i n  the  sense t h a t  the  s t ab le  and unstable manifolds of 

p are  loca l ly  homeomorphic t o  the  s table  and unstable manifolds of 

t he  l inear  var ia t iona l  equation. 

of (2)  With t h i s  def in i t ion ,  it was shovn by Hale and Perello 

Recently, Oliva [ 21 has formulated the  concept of fwictional 

d i f f e r e n t i a l  equations on a compact manifold. 

the  family of a l l  f which have a continuous bounded first der ivat ive 

such t h a t  system (2) has  only elementary (or nondegenerate) c r i t i c a l  

He a l so  has s h m n  t h a t  
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1 
points i s  open and dense i n  t h e  C -topology of a l l  f having a con- 

tinuous bounded first derivative.  

If system (2) has a nonconstant co-periodic solution p, then 

the  l inear  var ia t iona l  equation r e l a t ive  t o  p i s  

i(t) = L ( t , z t )  

whire L(t+cu,cp) = L(t,cp) i s  the  der ivat ive of  f a t  p evaluated 

at cp. 

tinuous l inear  3perators T( t ,c r ) ,  t 2 cr,  taking C i n t o  C by defining 

To the  l inear  equation (6), one can associate a family of con- 

where z(cr,cp) i s  the  solution of (6) w i t h  i n i t i a l  value cp a t  6. 

Stokes [ 3 ]  has  shown t h a t  the  spectrum of t he  operator 

s is ts  only of paint spectrum (except f o r  

T(accu,a) con- 

(O]), i s  independent of Q 

and he j u s t i f i a b l y  c a l l s  t h e  s p e e t r m  of t h i s  operator the ‘character- 

i s t i c  mult ipl iers  of (7).  - 
Since p i s  a nonconstarit w-periodic solution o f  ( 2 ) ,  

t h e  der ivat ive 5 i s  a non t r iv i a l  w-periodic solution of (6) and 

therefore  m e  of the  charac te r i s t ic  a u l t i p l i e r s  of (6) i s  one. If 

i s  a generator f o r  t he  generalized eigenspace of the  mult ipl ier  

one of T(ow,a),  then 5 i s  a generator f o r  t he  generalized eigen- 
Q: 
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space of the  mult ipl ier  one of T(a+co,a) f o r  any a. I n  such a case, 

we say the  o rb i t  I' generated by the  u-periodic solution p i s  non- 

degenerate. If I' i s  nondegenerate and a l so  no other mult ipl iers  of 

(6) have modulus one, we say I' i s  elerfientary. The theory of non- 

- 

degenerate and elementary periodic o rb i t s  i s  not complete a t  the  pres- 

ent time although a few r e s u l t s  a r e  available.  

ez s i ly  prctve t h a t  a nondegenerate w-periodic o rb i t  I' of (2)  i s  iso- 

lated i n  the  sense t h a t  there  i s  a neighborhoDd V of I' such t h a t  V'\Y 

contains no w-periodic o rb i t s .  

For example, one can 

Halanay [ 41 has proved the following more complicated s ta te -  

ment: If the d i f f e r e n t i a l  difference equation 

k ( t )  = g ( x ( t ) , x ( t - r ) )  

has  a nondegenerate periodic o rb i t  l', then there  i s  an c0 > O  such 

t h a t  the  equation 

(3) H( t) = h( x( t) ,x( t-r), E) 

has a nondegenerate periodic o rb i t  for 5 E and To = I? 

provided t h a t  h( x,y, E) 

di f fe ren t iab le  i n  x and y, and h(x,y,O) = g(x,y). 

0 

i s  continuous i n  i t s  arguments, continuously 

We have'obtained an extension of the  r e su l t  of Halanay 

t o  a ra ther  general c l a s s  of functional d i f f e r e n t i a l  equations. Suppose 

. 
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n x: R -+E 

y ( ~ ) .  Then 

i s  a continuous function, t = ( l + f 3 ) ~ ,  f3 > -1 and x ( t )  = 

ranges over t he  in t e rva l  [ -r , O ] ,  r = r/( S+f3). 1 1 where 5 = e/(l-cf3) 

We say a function f: c + 

di f fe ren t iab le  function x: R + E  , the  function f ( x  ) = f ( y  ) 

considered as a function of (3 i s  continuously different iable .  Any f 

i s  of c lass  (SI i s  f o r  any con t inuxs ly  

n 
t T J P  

of the  form 

where F and the g a re  czxd~inu3usly d i f fe ren t iab le  vector functions 

and the  7 
j 

a re  matrices D f  bounded var ia t ion i s  of c l a s s  (S)  . 
j 
The following r e s u l t  i s  true: Suppose G ( c p , ~ )  i s  of c l a s s  

(S) ,  i s  continuous i n  c p , ~ ,  continuously d i f fe ren t iab le  i n  cp and 

G(cp,O) = f(cp) If system (2)  has a nondegenerate periodic o rb i t  I?, 

then there  i s  an E~ > 0 such t h a t  the  system 

2( t )  = G ( x ~ , E )  

has a nondegenerate periodic o rb i t  rE f o r  IcI s eo and P = r. 
0 

The ideas i n  the  proof of the above theorem a r e  as f3llows. 

To obtain a periadic solut io3 of (10) which f a r  E = 0 coincides with the  



7 

t h e  equation 

For a fixed E and f3 su f f i c i en t ly  small, one shows there  a re  a scalar  

function B ( E , ~ )  and an w-perioStic function P*(T,E,B), P*(T,o,o) = 

p( 7) , sa t i s fy ing  

The hypotheses of the  theorem imply t h a t  B(0,O) = 0 and aR(E,B)/aP f 0 

f o r  E = 0,  f3 = 0. The impl ic i t  function theorem implies t he  existence 

of a ( 3 ( c ) ,  g ( 0 )  = 0, such t h a t  B(E ,@(c) )  = 0 and, therefore,  t he  

existence of a periodic solution of (10) i 

The discussion of an elementary periodic o rb i t  i s  much more 

d i f f i c u l t .  TZI the  author's knowledge, the  f irst  r e s u l t  dealing w i t h  

t he  s t a b i l i t y  pmper t ies  of a periodic x b i t  of (2) i s  due t o  Stokes 

[TI. He proved the  following thearem: If I' i s  nondegenerate and a l l  

charac te r i s t ic  mult ipl iers  of (6) except one have modulus l e s s  than one, 

then there  i s  a neighborhood V of I' such t h a t  any solution of (2) 

wlth i n i t i a l  value i n  V must approach I' exponentially as t + m  and 

with asymptotic phase; t h a t  is, there  a re  pos i t ive  constants K,a such 

t h a t  for  any 9 i n  V, there  i s  a constant y w i t h  



For the  case when some mul t ip l ie rs  have modulus 

one, some fur ther  information i s  a l so  avai lable ,  Suppose 

constant and consider the  l i nea r  va r i a t iona l  equation f o r  

of (2) r e l a t i v e  t o  p( t+y) .  There ex i s t  two subspaces of 

U( y), such t h a t  any solution of the  l i nea r  equation which 
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greater  than 

y i s  a given 

the  solutions 

c y  s(r) and 

+ O  as  t+.o 

a r e  s e t s  

which a r e  loca l ly  homeomorphic t o  S(y) and U(y) such t h a t  any solu- 

t i o n  which remains i n  a ce r t a in  &neighborhood of zero f o r  t 2 0 

Ss( y), Us( y) associated w i t h  t h e  camplete va r i a t iona l  equation 

( t  5 0) must have i t s  

s e t  Y i s  the  s tab le  

neighborhood V of I' 

i n i t i a l  value 

manifold of a 

i f  t h e  o r b i t  

a t  t = 0 on Ss(r)  (Us(y) ) .  A 

periodic o r b i t  T' r e l a t i v e  t o  a 

I' i s  pos i t ive ly  s tab le  r e l a t ive  

t o  i n i t i a l  values on 9 and any solut ion which remains i n  V fo r  t Z 0 

must have i t s  i n i t i a l  value on Y arid approach r as t -+a, The un- 

s tab le  manifold i s  defined analogously for t 5 0. We have been able  t o  

prove t h a t  

a r e  s t ab le  

s e t  2.( i s  

the  s e t s  9 = U 0s- ( P  r +ss(r)) and u="o~m ( P  r +U 6 (r)) 
and unstable manifolds, respectively,  of I'. Finally,  t h e  

e i the r  homeomorphic t o  Uo( 6) X (a  c i r c l e )  or a generalized 

Mobius band w i t h  cross section Uo(6) .  

time t h a t  

generalized MDbius band w i t h  cross section 

It has not been shown a t  t h i s  

i s  e i the r  homeomorphic t o  So(&)  X (a  c i r c l e )  or  a 

So( 6). 
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